Any feedback?
Please rate this page
(ecexplorer.php)
(0/150)

BRENDA support

EC Explorer

EC 1.14.13.250 Details
EC number
1.14.13.250
Accepted name
nitrosourea synthase
Reaction
Nω-methyl-L-arginine + 2 NADH + 2 H+ + 3 O2 = Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline + 2 NAD+ + 3 H2O (overall reaction);;(1a) Nω-methyl-L-arginine + NADH + H+ + O2 = Nδ-hydroxy-Nω-methyl-L-arginine + NAD+ + H2O;;(1b) Nδ-hydroxy-Nω-methyl-L-arginine + NADH + H+ + O2 = Nδ,Nω;-dihydroxy-Nω-methyl-L-arginine + NAD+ + H2O;;(1c) Nδ,Nω;-dihydroxy-Nω-methyl-L-arginine + O2 = Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline + H2O
Other name(s)
sznF (gene name), StzF
Systematic name
Nω-methyl-L-arginine,NADH:oxygen oxidoreductase (Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline-forming)
Comment
The enzyme, characterized from the bacterium Streptomyces achromogenes subsp. streptozoticus, catalyses a complex multi-step reaction during the biosynthesis of the glucosamine-nitrosourea antibiotic streptozotocin. The overall reaction is an oxidative rearrangement of the guanidine group of Nω-methyl-L-arginine, generating an N-nitrosourea product. The enzyme hydroxylates its substrate at the Nδ position, followed by a second hydroxylation at the Nω′ position. It then catalyses an oxidative rearrangement to form Nδ-hydroxy-Nω-methyl-Nω-nitroso-L-citrulline. This product is unstable, and degrades non-enzymically into nitric oxide and the denitrosated product Nδ-hydroxy-Nω-methyl-L-citrulline. The enzyme contains two active sites, each of which utilizes a different iron-containing cofactor.
History
created 2021
EC Tree
1.14.13.45 created 1992, deleted 2003