Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-amino-3-hydroxybenzoic acid + O2
2,3-pyridinedicarboxylic acid + H2O
Substrates: -
Products: intermediate 2-amino-3-carboxymuconic acid semialdehyde
?
3-hydroxy-4-methylanthranilic acid + O2
?
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
4-ethyl-3-hydroxyanthranilate + O2
2-amino-3-carboxy-4-ethylmuconate semialdehyde
-
Substrates: -
Products: -
?
4-methyl-3-hydroxyanthranilate + O2
2-amino-3-carboxy-4-methylmuconate semialdehyde
-
Substrates: -
Products: -
?
4-propyl-3-hydroxyanthranilic acid + O2
2-amino-3-carboxy-4-propylmuconate semialdehyde
-
Substrates: -
Products: -
?
additional information
?
-
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: the enzymatic product subsequently cyclizes to quinolinate
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: the enzyme employs loop dynamics to accommodate two substrates with disparate polarities
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: the enzyme employs loop dynamics to accommodate two substrates with disparate polarities
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: reacts spontaneously to quinolinic acid
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?, r
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: reacts spontaneously to quinolinic acid
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: enzyme occurs in the metabolic pathway of the conversion of tryptophan to nicotinic acid
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: reacts spontaneously to quinolinic acid
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: high selectivity for substrate
Products: reacts spontaneously to quinolinic acid
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: in mammalian peripheral organs the enzyme constitutes a link in the catabolic pathway of tryptophan to NAD+
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: biosynthetic enzyme of the endogenous excitotoxin quinolinic acid
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: reacts spontaneously to quinolinic acid
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: in the kynurenine pathway
Products: -
?
additional information
?
-
Substrates: no detectable activity with 3-amino-4-hydroxybenzoic acid, 4-aminoresorcinol, 2-amino-m-cresol, 4-amino-3-hydroxybenzoic acid, 3-aminosalicylic acid, 6-amino-m-cresol, 3-methylcatechol, 4-methylcatechol, 1,2,4-trihydroxybenzene, 2,3-dihydroxybenzoic acid, 4-amino-m-cresol, 5-aminosalicylic acid, gentisic acid, homogentisic acid, 2-amino-4-chlorophenol, 2-amino-p-cresol, catechol, 1,2,3-trihydroxybenzene, protocatechuic acid, hydroquinone as substrates
Products: -
?
additional information
?
-
-
Substrates: no detectable activity with 3-amino-4-hydroxybenzoic acid, 4-aminoresorcinol, 2-amino-m-cresol, 4-amino-3-hydroxybenzoic acid, 3-aminosalicylic acid, 6-amino-m-cresol, 3-methylcatechol, 4-methylcatechol, 1,2,4-trihydroxybenzene, 2,3-dihydroxybenzoic acid, 4-amino-m-cresol, 5-aminosalicylic acid, gentisic acid, homogentisic acid, 2-amino-4-chlorophenol, 2-amino-p-cresol, catechol, 1,2,3-trihydroxybenzene, protocatechuic acid, hydroquinone as substrates
Products: -
?
additional information
?
-
Substrates: no detectable activity with 3-amino-4-hydroxybenzoic acid, 4-aminoresorcinol, 2-amino-m-cresol, 4-amino-3-hydroxybenzoic acid, 3-aminosalicylic acid, 6-amino-m-cresol, 3-methylcatechol, 4-methylcatechol, 1,2,4-trihydroxybenzene, 2,3-dihydroxybenzoic acid, 4-amino-m-cresol, 5-aminosalicylic acid, gentisic acid, homogentisic acid, 2-amino-4-chlorophenol, 2-amino-p-cresol, catechol, 1,2,3-trihydroxybenzene, protocatechuic acid, hydroquinone as substrates
Products: -
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-amino-3-hydroxybenzoic acid + O2
2,3-pyridinedicarboxylic acid + H2O
Substrates: -
Products: intermediate 2-amino-3-carboxymuconic acid semialdehyde
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: enzyme occurs in the metabolic pathway of the conversion of tryptophan to nicotinic acid
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: -
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: in mammalian peripheral organs the enzyme constitutes a link in the catabolic pathway of tryptophan to NAD+
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: biosynthetic enzyme of the endogenous excitotoxin quinolinic acid
Products: -
?
3-hydroxyanthranilate + O2
2-amino-3-carboxymuconate semialdehyde
-
Substrates: in the kynurenine pathway
Products: -
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,10-phenanthroline
Fe2+ chelator, 1 mM, complete inhibition
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide methiodide
carboxyl-directed reagent, 1 mM, 26% inhibition
2,2'-dipyridyl
Fe2+ chelator, 1 mM, complete inhibition
4,6-dibromo-3-hydroxyanthranilic acid
-
NCR-631, characterization of in vivo effects, reversible inhibition with short half-life following systematic administration
4-Bromo-3-hydroxyanthranilic acid
4-Chloro-3-hydroxyanthranilate
4-Chloro-3-hydroxyanthranilic acid
-
competitive
4-Fluoro-3-hydroxyanthranilic acid
-
competitive
6-chloro-3-hydroxyanthranilic acid
-
5-20 mM, loss of enzymatic activity as a function of the inhibitor concentration
anthranilic acid
-
competitive inhibition
Co2+
1 mM, 92% inhibition
Cu2+
0.1 mM, complete inhibition
diethyl dicarbonate
modifies histidine residues of catechol dioxygenases, 1 mM, 70% inhibition
Dithionitrobenzoic acid
cysteine-directed reagent, 1 mM, complete inhibition
EDTA
1 mM, 99% inhibition
Fe3+
0.1 mM, 82% inhibition
iodoacetate
cysteine-directed reagent, 1 mM, 42% inhibition
Ni2+
1 mM, 82% inhibition
o-methoxybenzoylalanine
-
in whole-liver homogenates, but in purified enzyme preparations only in the presence of mitochondria
p-chloromercuribenzoate
-
-
p-chloromercuriphenyl sulfonic acid
-
-
quinolinic acid
-
competitive inhibition
4-Bromo-3-hydroxyanthranilic acid
-
competitive
4-Bromo-3-hydroxyanthranilic acid
-
-
4-Chloro-3-hydroxyanthranilate
-
it is possible that inhibition of 3-HAD may improve neurologic status through an increased production of kynurenic acid, a non-specific inhibitor of excitatory amino acid receptors and an inhibitor of quinolinic acid neurotoxicity
4-Chloro-3-hydroxyanthranilate
-
the inactivation results in the consumption of 2 equivalents of oxygen and the production of superoxide. The inhibitor stimulates the oxidation of the active site Fe(II) to the catalytically inactive Fe(III) oxidation state. The inactivated enzyme can be reactivated by treatment with DTT and FeI(II). The nhibitor does not form an adduct with the enzyme. Four conserved cysteines are oxidized to two disulfides (Cys125-Cys128 and Cys162-Cys165) during the inactivation reaction. These results are consistent with a mechanism in which the enzyme, complexed to the inhibitor and O2, generates superoxide which subsequently dissociates, leaving the inhibitor and the oxidized iron center at the active site
4-Chloro-3-hydroxyanthranilate
-
-
Cd2+
-
-
Cd2+
0.1 mM, more than 99% inhibition
Zn2+
-
-
Zn2+
binds at the active site, binding structure, overview
Zn2+
0.1 mM, 99% inhibition
additional information
-
not: Mn2+, Ni2+, Cu2+, Re3+, Os3+, Pb2+
-
additional information
-
not at a concentration of 0.5 mM: L-tryptophan, quinolinic acid, kynurenic acid, nicotinic acid mononucleotide, picolinic acid, phthalic acid, glutaric acid, L-aspartic acid, L-glutamic acid, N-methyl-D-aspartic acid, kainic acid
-
additional information
-
both geometrical end electronic structural feature of 4,5- and 4,6-disubstituted and 4,5,6-trisubstituted 3-hydroxyanthranilic derivates play an important role in the inhibitory potency
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Decker, R.H.; Kang, H.H.; Leach, F.R.; Henderson, L.M.
Purification and properties of 3-hydroxyanthranilic acid oxidase
J. Biol. Chem.
236
3076-3082
1961
Bos taurus
brenda
Koontz, W.A.; Shiman, R.
Beef kidney 3-hydroxyanthranilic acid oxygenase. Purification, characterization, and analysis of the assay
J. Biol. Chem.
251
368-377
1976
Bos taurus
brenda
Foster, A.C.; White, R.J.; Schwarcz, R.
Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro
J. Neurochem.
47
23-30
1986
Rattus norvegicus
brenda
Okuno, E.; Khler, C.; Schwarcz, R.
Rat 3-hydroxyanthranilic acid oxygenase: purification from the liver and immunocytochemical localization in the brain
J. Neurochem.
49
771-780
1987
Rattus norvegicus
brenda
Walsh, J.L.; Todd, W.P.; Carpenter, B.K.; Schwarcz, R.
4-Halo-3-hydroxyanthranilic acids: potent competitive inhibitors of 3-hydroxy-anthranilic acid oxygenase in vitro
Biochem. Pharmacol.
42
985-990
1991
Rattus norvegicus
brenda
Serrano, A.E.; Nagayama, F.
Liver 3-hydroxyanthranilic acid oxygenase activity in rainbow trout (Oncorhynchus mykiss)
Comp. Biochem. Physiol. B
99
275-280
1991
Oncorhynchus mykiss
brenda
Savage, N.; Levy, P.R.
The purification and some properties of 3-hydroxyanthranilate oxygenase from baboon liver
Int. J. Biochem.
6
459-466
1975
Papio ursinus
-
brenda
Malherbe, P.; Koehler, C.; Da Prada, M.; Lang, G.; Kiefer, V.; Schwarcz, R.; Lahm, H.W.; Cesura, A.M.
Molecular cloning and functional expression of human 3-hydroxyanthranilic-acid dioxygenase
J. Biol. Chem.
269
13792-13797
1994
Rattus norvegicus
brenda
Roberts, R.C.; McCarthy, K.E.; Du, F.; Okuno, E.; Schwarcz, R.
Immunocytochemical localization of the quinolinic acid synthesizing enzyme, 3-hydroxyanthranilic acid oxygenase, in the rat substantia nigra
Brain Res.
650
229-238
1994
Rattus norvegicus
brenda
Fornstedt-Wallin, B.; Lundstrom, J.; Fredriksson, G.; Schwarcz, R.; Luthman, J.
3-Hydroxyanthranilic acid accumulation following administration of the 3-hydroxyanthranilic acid 3,4-dioxygenase inhibitor NCR-631
Eur. J. Pharmacol.
386
15-24
1999
Rattus norvegicus
brenda
Roberts, R.C.; McCarthy, K.E.; Du, F.; Ottersen, O.P.; Okuno, E.; Schwarcz, R.
3-Hydroxyanthranilic acid oxygenase-containing astrocytic processes surround glutamate-containing axon terminals in the rat striatum
J. Neurosci.
15
1150-1161
1995
Rattus norvegicus
brenda
Cesura, A.M.; Alberati-Giani, D.; Buchli, R.; Broger, C.; Kohler, C.; Vilbois, F.; Lahm, H.W.; Heitz, M.P.; Malherbe, P.
Molecular characterization of kynurenine pathway enzymes: 3-Hydroxyanthranilic-acid dioxygenase and kynurenine aminotransferase
Adv. Exp. Med. Biol.
398
477-483
1996
Rattus norvegicus
brenda
Chiarugi, A.; Moroni, F.
Effects of mitochondria and o-methoxybenzoylalanine on 3-hydroxyanthranilic acid dioxygenase activity and quinolinic acid synthesis
J. Neurochem.
72
1125-1132
1999
Mus musculus
brenda
Calderone, V.; Trabucco, M.; Menin, V.; Negro, A.; Zanotti, G.
Cloning of human 3-hydroxyanthranilic acid dioxygenase in Escherichia coli: characterisation of the purified enzyme and its in vitro inhibition by Zn2+
Biochim. Biophys. Acta
1596
283-292
2002
Homo sapiens
brenda
Agrawal, V.K.; Sohgaura, R.; Khadikar, P.V.
QSAR study on inhibition of brain 3-hydroxy-anthranilic acid dioxygenase (3-HAO): a molecular connectivity approach
Bioorg. Med. Chem.
9
3295-3299
2001
Rattus norvegicus
brenda
Kucharczyk, R.; Zagulski, M.; Rytka, J.; Herbert, C.J.
The yeast gene YJR025c encodes a 3-hydroxyanthranilic acid dioxygenase and is involved in nicotinic acid biosynthesis
FEBS Lett.
424
127-130
1998
Escherichia coli, Saccharomyces cerevisiae (P47096), Saccharomyces cerevisiae
brenda
Muraki, T.; Taki, M.; Hasegawa, Y.; Iwaki, H.; Lau, P.C.
Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7
Appl. Environ. Microbiol.
69
1564-1572
2003
Pseudomonas fluorescens (Q83V26), Pseudomonas fluorescens, Pseudomonas fluorescens KU-7 (Q83V26)
brenda
Nandi, D.; Lightcap, E.S.; Koo, Y.K.; Lu, X.; Quancard, J.; Silverman, R.B.
Purification and inactivation of 3-hydroxyanthranilic acid 3,4-dioxygenase from beef liver
Int. J. Biochem. Cell Biol.
35
1085-1097
2003
Bos taurus
brenda
Colabroy, K.L.; Zhai, H.; Li, T.; Ge, Y.; Zhang, Y.; Liu, A.; Ealick, S.E.; McLafferty, F.W.; Begley, T.P.
The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3-hydroxyanthranilate
Biochemistry
44
7623-7631
2005
Cupriavidus metallidurans
brenda
Zhang, Y.; Colabroy, K.L.; Begley, T.P.; Ealick, S.E.
Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis
Biochemistry
44
7632-7643
2005
Cupriavidus metallidurans
brenda
Comai, S.; Costa, C.V.; Ragazzi, E.; Bertazzo, A.; Allegri, G.
The effect of age on the enzyme activities of tryptophan metabolism along the kynurenine pathway in rats
Clin. Chim. Acta
360
67-80
2005
Rattus norvegicus
brenda
Yates Jennifer , Y.J.; Heyes Melvyn , H.M.; Blight Andrew , B.A.
4-chloro-3-hydroxyanthranilate reduces local quinolinic acid synthesis, improves functional recovery, and preserves white matter after spinal cord injury
J. Neurotrauma
23
866-881
2006
Cavia porcellus, Cavia porcellus Hartley
brenda
Maharaj, H.; Maharaj, D.S.; Daya, S.
Acetylsalicylic acid and acetaminophen protect against oxidative neurotoxicity
Metab. Brain Dis.
21
189-199
2006
Rattus norvegicus, Rattus norvegicus Wistar
brenda
Li, X.; Guo, M.; Fan, J.; Tang, W.; Wang, D.; Ge, H.; Rong, H.; Teng, M.; Niu, L.; Liu, Q.; Hao, Q.
Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: a special subgroup of the type III extradiol dioxygenases
Protein Sci.
15
761-773
2006
Saccharomyces cerevisiae
brenda
Dilovic, I.; Gliubich, F.; Malpeli, G.; Zanotti, G.; Matkovic-Calogovic, D.
Crystal structure of bovine 3-hydroxyanthranilate 3,4-dioxygenase
Biopolymers
91
1189-1195
2009
Bos taurus (Q0VCA8), Bos taurus
brenda
Chakraborty, B.; Paine, T.
Aromatic ring cleavage of 2-amino-4-tert-butylphenol by a nonheme iron(II) complex: functional model of 2-aminophenol dioxygenases
Angew. Chem. Int. Ed. Engl.
52
920-924
2013
Pseudomonas oleovorans
brenda
Pidugu, L.S.; Neu, H.; Wong, T.L.; Pozharski, E.; Molloy, J.L.; Michel, S.L.; Toth, E.A.
Crystal structures of human 3-hydroxyanthranilate 3,4-dioxygenase with native and non-native metals bound in the active site
Acta Crystallogr. Sect. D
73
340-348
2017
Homo sapiens (P46952), Homo sapiens
brenda
Brkic, H.; Kovacevic, B.; Tomic, S.
Human 3-hydroxyanthranilate 3,4-dioxygenase dynamics and reaction, a multilevel computational study
Mol. Biosyst.
11
898-907
2015
Homo sapiens (P46952), Homo sapiens
brenda
Yang, Y.; Liu, F.; Liu, A.
Adapting to oxygen 3-hydroxyanthrinilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities
J. Biol. Chem.
293
10415-10424
2018
Cupriavidus metallidurans (Q1LCS4), Cupriavidus metallidurans ATCC 43123 (Q1LCS4)
brenda
Wang, Y.; Liu, K.F.; Yang, Y.; Davis, I.; Liu, A.
Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens
Proc. Natl. Acad. Sci. USA
117
19720-19730
2020
Cupriavidus metallidurans (Q1LCS4), Cupriavidus metallidurans ATCC 43123 (Q1LCS4)
brenda