Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2R,3R)-2,3-butanediol + NAD+
(3R)-acetoin + NADH
(2R,3R)-2,3-butanediol + NADP+
(R)-acetoin + NADPH + H+
no detectable activity with (2S,3S)-2,3-butanediol
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
?
69.5% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
(2S)-acetoin + NADH + H+
(2S,3S)-butane-2,3-diol + NAD+
(2S,3S)-butane-2,3-diol + NAD+
(2S)-acetoin + NADH + H+
(2S,3S)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
(3R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
-
-
-
-
?
(3R,3S)-acetoin + NADH
(2R,3R)-2,3-butanediol + meso-2,3-butanediol + NAD+
(3R,3S)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
(3S)-acetoin + NADH + H+
(2R,3S)-butane-2,3-diol + NAD+
-
-
-
-
?
(R)-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
73% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction, very low activity with the (S)-enantiomer
-
-
?
(R)-1-phenyl-1,2-ethanediol + NAD+
?
32.2% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADPH + H+
(2R,3R)-2,3-butanediol + NAD+
-
-
-
-
?
(R)-acetoin + NADPH + H+
(2R,3R)-butane-2,3-diol + NADP+
wild type enzyme does not use NADPH as coenzyme
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
(R,S)-3-hydroxy-2-pentanone + NADH
2,3-pentanediol + NAD+
-
-
-
r
(R,S)-4-hydroxy-3-pentanone + NADH
2,3-pentanediol + NAD+
-
-
-
r
1,2-butanediol + NAD+
?
-
-
-
-
?
1,2-hexanediol + NAD+
? + NADH + H+
50% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction
-
-
?
1,2-pentandiol + NAD+
? + NADH + H+
-
-
-
r
1,2-pentanediol + NAD+
? + NADH + H+
74% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction
-
-
?
1,2-propandiol + NAD+
? + NADH + H+
-
-
-
r
1,2-propanediol + NAD+
?
-
-
-
-
?
1,3-dihydroxyacetone + NADH + H+
?
1-hydroxy-2-butanone + NADH
?
-
-
-
-
?
1-hydroxy-2-butanone + NADH + H+
?
-
low activity
-
-
?
1-hydroxy-2-propanone + NADH + H+
propane-1,2-diol + NAD+
-
-
-
-
r
2,2,2-trifluoroacetophenone + NADH + H+
?
2,3-butanediol + NAD+
acetoin + NADH
2,3-butanediol + NAD+
acetoin + NADH + H+
-
-
-
-
r
2,3-pentanediol + NAD+
4-hydroxy-3-pentanone + 3-hydroxy-2-pentanone + NADH
2-butanone + NADP+
2-butanol + NADPH + H+
-
-
-
-
?
2-hydroxyacetophenone + NADH + H+
?
8.7% activity compared to (R)-acetoin
-
-
?
2-octanone + NADH + H+
?
9.3% activity compared to (R)-acetoin
-
-
?
2-pentanone + NADH
(S)-2-pentanol + NAD+
-
-
-
-
?
2-propanol + NAD+
2-propanone + NADH + H+
3-methyl-2-butenal + NADH + H+
?
16.7% activity compared to (R)-acetoin
-
-
?
acetaldehyde + NADPH + H+
ethanol + NADP+
-
-
-
?
acetoin + 2 NADPH + 2 H+
(2R,3R)-2,3-butanediol + meso-2,3-butanediol + 2 NADP+
-
-
-
r
acetoin + NAD+
diacetyl + NADH
-
18% of the activity with 2,3-butanediol, in the reverse reaction 150% of the activity with acetoin
-
-
r
acetoin + NADH
2,3-butanediol + NAD+
-
-
-
-
r
acetoin + NADH + H+
(R,R)-butanediol + NAD+
acetoin + NADH + H+
2,3-butanediol + NAD+
acetoin + NADPH + H+
(R,R)-butanediol + NADP+
acetone + NADPH + H+
propan-2-ol + NADP+
butane-1,3-diol + NAD+
?
14.7% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
butanone + NADH + H+
?
-
low activity
-
-
?
butanone + NADPH + H+
butan-2-ol + NADP+
-
-
-
?
cyclohexanone + NADH
?
-
38% of the activity with acetoin
-
-
?
diacetyl + NADH
2,3-butanediol + NAD+
diacetyl + NADH + H+
(2S)-acetoin + NAD+
diacetyl + NADH + H+
(R)-acetoin + NAD+
diacetyl + NADH + H+
acetoin + NAD+
diacetyl + NADH + H+
acetoin + NADH + H+
-
low activity
-
-
?
diacetyl + NADH + H+
acetoin + NADH+
88.2% activity compared to acetoin
-
-
?
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
dihydroxyacetone + NADH
?
-
36% of the activity with acetoin
-
-
?
dihydroxyacetone phosphate + NADH
?
-
82% of the activity with acetoin
-
-
?
ethyl 4-chloro-3-hydroxybutyrate + NAD+
?
12.2% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
ethyl pyruvate + NADH
?
-
-
-
-
?
glycerol + NAD+
? + NADH + H+
-
-
-
r
hexane-2,5-dione + NADH + H+
?
-
low activity
-
-
?
hydroxyacetone + NADH
1,2-propanediol
-
-
-
?
isobutanol + NAD+
?
0.4% activity compared to (R,R)-butane-2,3-diol
-
-
?
meso-2,3-butanediol + NAD+
D-(-)-acetoin + NADH
meso-butane-2,3-diol + NAD+
(3S)-acetoin + NADH + H+
meso-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
meso-butane-2,3-diol + NAD+
acetoin + NADH + H+
methyl glyoxal + NADH
?
-
-
-
-
?
methyl pyruvate + NADH
?
-
-
-
-
?
n-butylaldehyde + NADH + H+
?
-
low activity
-
-
?
pentane-1,2-diol + NAD+
?
-
very low activity
-
-
?
pentane-2,3-dione + NADH + H+
?
-
low activity
-
-
?
pentane-2,4-dione + NADH + H+
?
-
low activity
-
-
?
propane-1,2-diol + NAD+
?
propane-1,3-diol + NAD+
?
1.4% activity compared to (R,R)-butane-2,3-diol
-
-
?
pyruvic aldehyde + NADH
?
-
81% of the activity with acetoin
-
-
?
rac-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
sodium lactate + NAD+
?
10.2% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
additional information
?
-
(2R,3R)-2,3-butanediol + NAD+

(3R)-acetoin + NADH
-
-
-
r
(2R,3R)-2,3-butanediol + NAD+
(3R)-acetoin + NADH
-
-
-
r
(2R,3R)-2,3-butanediol + NAD+
(3R)-acetoin + NADH
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+

(3R)-acetoin + NADH + H+
-
-
-
-
?
(2R,3R)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
-
-
-
-
?
(2R,3R)-butane-2,3-diol + NAD+

(3R,3S)-acetoin + NADH + H+
preferred substrate
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
preferred substrate, very low activity with the (S)-enantiomer
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
preferred substrate
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
preferred substrate, very low activity with the (S)-enantiomer
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
Paenibacillus polymyxa ATCC 12321 has the ability to form almost exclusively the R isomer of 2,3-BDL (over 98%) when grown under anaerobic conditions
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
sole product in the reduction reaction, preferred substrate in the oxidation reaction
preferred substrate in the reduction reaction
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
Paenibacillus polymyxa ATCC 12321 has the ability to form almost exclusively the R isomer of 2,3-BDL (over 98%) when grown under anaerobic conditions
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
sole product in the reduction reaction, preferred substrate in the oxidation reaction
preferred substrate in the reduction reaction
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+

(R)-acetoin + NADH + H+
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
r
(2S)-acetoin + NADH + H+

(2S,3S)-butane-2,3-diol + NAD+
-
the enzyme is not absolutely specific for (S)-acetoin, though this is the preferred substrate
-
-
?
(2S)-acetoin + NADH + H+
(2S,3S)-butane-2,3-diol + NAD+
-
the enzyme is not absolutely specific for (S)-acetoin, though this is the preferred substrate
-
-
?
(2S,3S)-butane-2,3-diol + NAD+

(2S)-acetoin + NADH + H+
-
-
-
-
?
(2S,3S)-butane-2,3-diol + NAD+
(2S)-acetoin + NADH + H+
-
-
-
-
?
(2S,3S)-butane-2,3-diol + NAD+

(R)-acetoin + NADH + H+
-
very low activity
-
-
?
(2S,3S)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
very low activity
-
-
?
(3R,3S)-acetoin + NADH

(2R,3R)-2,3-butanediol + meso-2,3-butanediol + NAD+
-
-
-
r
(3R,3S)-acetoin + NADH
(2R,3R)-2,3-butanediol + meso-2,3-butanediol + NAD+
-
-
-
r
(3R,3S)-acetoin + NADH
(2R,3R)-2,3-butanediol + meso-2,3-butanediol + NAD+
the enzyme shows lower Km value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, the reduction reaction is preferred, low activity with (2R,3R)-2,3-butanediol
-
-
r
(3R,3S)-acetoin + NADH
(2R,3R)-2,3-butanediol + meso-2,3-butanediol + NAD+
the enzyme shows lower Km value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, the reduction reaction is preferred, low activity with (2R,3R)-2,3-butanediol
-
-
r
(3R,3S)-butane-2,3-diol + NAD+

(3R,3S)-acetoin + NADH + H+
-
-
-
-
?
(3R,3S)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
-
-
-
-
?
(R)-acetoin + NADH + H+

(2R,3R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
the activity of (R)-acetoin reduction is 7.7times higher than that of (2R,3R)-butane-2,3-diol oxidation at pH 7.0
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
the activity of (R)-acetoin reduction is 7.7times higher than that of (2R,3R)-butane-2,3-diol oxidation at pH 7.0
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
-
-
-
?
(R)-acetoin + NADH + H+

(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
low activity
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
low activity
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+

(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
preferred substrate, 100% activity
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
preferred substrate, 100% activity
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
1,3-dihydroxyacetone + NADH + H+

?
-
low activity
-
-
?
1,3-dihydroxyacetone + NADH + H+
?
-
low activity
-
-
?
1,4-butanediol + NAD+

?
low activity
-
-
r
1,4-butanediol + NAD+
?
low activity
-
-
r
2,2,2-trifluoroacetophenone + NADH + H+

?
28% activity compared to (R)-acetoin
-
-
?
2,2,2-trifluoroacetophenone + NADH + H+
?
28% activity compared to (R)-acetoin
-
-
?
2,3-butanediol + NAD+

acetoin + NADH
-
D(-)-2,3-butandiol
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
-
-
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
-
-
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
-
-
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
-
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
-
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
-
-
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
2,3-butanediol without specification of stereochemistry
-
-
-
2,3-butanediol + NAD+
acetoin + NADH
-
D(-)-2,3-butandiol
-
-
-
2,3-butanediol + NAD+
acetoin + NADH
-
2,3-butanediol without specification of stereochemistry
-
r
2,3-butanediol + NAD+
acetoin + NADH
-
oxidation occurs selectively at the (R)-center of 2,3-butanediol
-
r
2,3-pentanediol + NAD+

4-hydroxy-3-pentanone + 3-hydroxy-2-pentanone + NADH
-
-
-
-
-
2,3-pentanediol + NAD+
4-hydroxy-3-pentanone + 3-hydroxy-2-pentanone + NADH
-
racemate
-
r
2-propanol + NAD+

2-propanone + NADH + H+
-
-
-
r
2-propanol + NAD+
2-propanone + NADH + H+
-
-
-
r
acetoin + NADH + H+

(R,R)-butanediol + NAD+
-
-
-
-
?
acetoin + NADH + H+
(R,R)-butanediol + NAD+
-
-
-
-
?
acetoin + NADH + H+

2,3-butanediol + NAD+
-
-
-
r
acetoin + NADH + H+
2,3-butanediol + NAD+
-
-
-
r
acetoin + NADH + H+
2,3-butanediol + NAD+
-
-
-
r
acetoin + NADH + H+
2,3-butanediol + NAD+
-
-
-
-
r
acetoin + NADH + H+
2,3-butanediol + NAD+
-
-
enzyme 1, only meso-2,3-butanediol is formed, enzyme 2 gives mixture of meso- and optical isomers
r
acetoin + NADH + H+
2,3-butanediol + NAD+
-
-
-
r
acetoin + NADH + H+
2,3-butanediol + NAD+
-
-
-
-
r
acetoin + NADPH + H+

(R,R)-butanediol + NADP+
-
-
-
-
?
acetoin + NADPH + H+
(R,R)-butanediol + NADP+
-
-
-
-
?
acetone + NADPH + H+

propan-2-ol + NADP+
-
-
-
?
acetone + NADPH + H+
propan-2-ol + NADP+
-
-
-
-
?
butane-1,2-diol + NAD+

?
-
low activity
-
-
?
butane-1,2-diol + NAD+
?
76.6% activity compared to (R,R)-butane-2,3-diol
-
-
?
butane-1,2-diol + NAD+
?
76.6% activity compared to (R,R)-butane-2,3-diol
-
-
?
butane-1,4-diol + NAD+

?
2.9% activity compared to (R,R)-butane-2,3-diol
-
-
?
butane-1,4-diol + NAD+
?
2.9% activity compared to (R,R)-butane-2,3-diol
-
-
?
diacetyl + NADH

2,3-butanediol + NAD+
-
-
-
-
-
diacetyl + NADH
2,3-butanediol + NAD+
-
-
enzyme 1, only meso-2,3-butanediol is formed, enzyme 2 gives mixture of meso- and optical isomers
r
diacetyl + NADH
2,3-butanediol + NAD+
-
-
-
-
diacetyl + NADH + H+

(2S)-acetoin + NAD+
-
-
-
-
?
diacetyl + NADH + H+
(2S)-acetoin + NAD+
-
-
-
-
?
diacetyl + NADH + H+

(R)-acetoin + NAD+
69.3% activity compared to (R)-acetoin
-
-
r
diacetyl + NADH + H+
(R)-acetoin + NAD+
69.3% activity compared to (R)-acetoin
-
-
r
diacetyl + NADH + H+

acetoin + NAD+
91% activity compared to (3R,3S)-acetoin in the reduction reaction, cf. EC 1.1.1.303
-
-
?
diacetyl + NADH + H+
acetoin + NAD+
91% activity compared to (3R,3S)-acetoin in the reduction reaction, cf. EC 1.1.1.303
-
-
?
diacetyl + NADH + H+
acetoin + NAD+
diacetyl can be converted into 2,3-butanediol via acetoin by the enzyme
-
-
?
diacetyl + NADH + H+
acetoin + NAD+
diacetyl can be converted into 2,3-butanediol via acetoin by the enzyme
-
-
?
dicaetyl + NADH + H+

(3S)-acetoin + NAD+
-
-
-
-
ir
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
-
r
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
-
r
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
-
ir
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
-
r
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
-
r
glycerol + NAD+

?
-
-
-
-
?
glycerol + NAD+
?
-
-
-
-
?
glycerol + NAD+
?
16.3% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
glycerol + NAD+
?
16.3% activity compared to (2R,3R)-butane-2,3-diol
-
-
?
isopropanol + NAD+

?
low activity
-
-
r
isopropanol + NAD+
?
low activity
-
-
r
meso-2,3-butanediol + NAD+

D-(-)-acetoin + NADH
-
-
-
-
-
meso-2,3-butanediol + NAD+
D-(-)-acetoin + NADH
-
-
-
-
-
meso-2,3-butanediol + NAD+
D-(-)-acetoin + NADH
-
-
-
-
-
meso-2,3-butanediol + NAD+
D-(-)-acetoin + NADH
-
-
-
-
-
meso-2,3-butanediol + NAD+
D-(-)-acetoin + NADH
-
-
-
-
-
meso-2,3-butanediol + NAD+
D-(-)-acetoin + NADH
-
-
(3S)-acetoin
r
meso-butane-2,3-diol + NAD+

(3S)-acetoin + NADH + H+
-
-
-
-
?
meso-butane-2,3-diol + NAD+
(3S)-acetoin + NADH + H+
-
-
-
-
?
meso-butane-2,3-diol + NAD+

acetoin + NADH + H+
93.6% activity compared to (R,R)-butane-2,3-diol
-
-
?
meso-butane-2,3-diol + NAD+
acetoin + NADH + H+
93.6% activity compared to (R,R)-butane-2,3-diol
-
-
?
meso-butane-2,3-diol + NAD+
acetoin + NADH + H+
61% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction
-
-
r
meso-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
meso-butane-2,3-diol + NAD+
acetoin + NADH + H+
72% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction
-
-
r
meso-butane-2,3-diol + NAD+
acetoin + NADH + H+
-
-
-
-
r
propane-1,2-diol + NAD+

?
-
low activity
-
-
?
propane-1,2-diol + NAD+
?
58.6% activity compared to (R,R)-butane-2,3-diol
-
-
?
rac-1,2-propanediol + NAD+

hydroxyacetone + NADH + H+
-
-
-
?
rac-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
68% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction
-
-
?
rac-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
-
-
-
?
rac-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
68% activity compared to (2R,3R)-butane-2,3-diol in the oxidation reaction
-
-
?
additional information

?
-
-
no activity with meso-butane-2,3-diol, glycerol, glycerol-3-phosphate, 1,3-dihydroxyacetone, dihydroxyacetonephosphate, glyceraldehyde-3-phosphate, 2-butanol, and 1,3-butanediol
-
-
-
additional information
?
-
-
no activity with meso-butane-2,3-diol, glycerol, glycerol-3-phosphate, 1,3-dihydroxyacetone, dihydroxyacetonephosphate, glyceraldehyde-3-phosphate, 2-butanol, and 1,3-butanediol
-
-
-
additional information
?
-
no activity with (S,S)-butane-2,3-diol
-
-
-
additional information
?
-
no activity with (S,S)-butane-2,3-diol
-
-
-
additional information
?
-
-
enzyme is a strictly NADPH-dependent primary-secondary alcohol dehydrogenase able to reduce acetoin to 2,3-butanediol. The enzyme accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone
-
-
-
additional information
?
-
enzyme is a strictly NADPH-dependent primary-secondary alcohol dehydrogenase able to reduce acetoin to 2,3-butanediol. The enzyme accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone
-
-
-
additional information
?
-
-
no activity with (2S,3S)-butane-2,3-diol or diacetyl
-
-
-
additional information
?
-
-
no activity with (2S,3S)-butane-2,3-diol or diacetyl
-
-
-
additional information
?
-
substrate specificity, overview. No or poor activity with ethanol, ethylene glycol, diethylene glycol, 1-propanol, 2-propanol, 1,3-propanediol, glycerol, dipropylene glycol, 1-butanol, 1,4-butanediol, 1,2,4-butanetriol, (2S,3S)-butane-2,3-diol, 1,5-pentanediol, 2,4-pentanediol, 3-methyl-1,5-pentandiol, and 1,2,6-hexantriol
-
-
-
additional information
?
-
substrate specificity, overview. No or poor activity with ethanol, ethylene glycol, diethylene glycol, 1-propanol, 2-propanol, 1,3-propanediol, glycerol, dipropylene glycol, 1-butanol, 1,4-butanediol, 1,2,4-butanetriol, (2S,3S)-butane-2,3-diol, 1,5-pentanediol, 2,4-pentanediol, 3-methyl-1,5-pentandiol, and 1,2,6-hexantriol
-
-
-
additional information
?
-
the enzyme is also active in reduction reaction with diacetyl (91% compared to (2R,3S)-acetoin) and glyceraldehyde-3-phosphate (12% compared to (2R,3S)-acetoin), cf. EC 1.1.1.303 and EC 1.1.1.8, respectively, but not with dihydroxyacetone phosphate. It shows low activity in oxidation reaction with ethanol, n-propanol, n-butanol, 1,3-propanediol, and 1,5-pentanediol
-
-
-
additional information
?
-
the enzyme is also active in reduction reaction with diacetyl (91% compared to (2R,3S)-acetoin) and glyceraldehyde-3-phosphate (12% compared to (2R,3S)-acetoin), cf. EC 1.1.1.303 and EC 1.1.1.8, respectively, but not with dihydroxyacetone phosphate. It shows low activity in oxidation reaction with ethanol, n-propanol, n-butanol, 1,3-propanediol, and 1,5-pentanediol
-
-
-
additional information
?
-
-
the enzyme is also active in reduction reaction with diacetyl (91% compared to (2R,3S)-acetoin) and glyceraldehyde-3-phosphate (12% compared to (2R,3S)-acetoin), cf. EC 1.1.1.303 and EC 1.1.1.8, respectively, but not with dihydroxyacetone phosphate. It shows low activity in oxidation reaction with ethanol, n-propanol, n-butanol, 1,3-propanediol, and 1,5-pentanediol
-
-
-
additional information
?
-
no activity with acetoin plus NAD+ or (2S,3S)-butane-2,3-diol witrh NAD+, or (S)-1-phenyl-1,2-ethanediol plus NAD+. 5% or less activity with 2-butanol, ethyl lactate, isopropanol, 1-butanol, cyclohexanol, 2-pentanol, 2-octanol, acetophenone, and 4-hydroxy-2-butanone
-
-
-
additional information
?
-
no activity with acetoin plus NAD+ or (2S,3S)-butane-2,3-diol witrh NAD+, or (S)-1-phenyl-1,2-ethanediol plus NAD+. 5% or less activity with 2-butanol, ethyl lactate, isopropanol, 1-butanol, cyclohexanol, 2-pentanol, 2-octanol, acetophenone, and 4-hydroxy-2-butanone
-
-
-
additional information
?
-
-
no activity with acetoin plus NAD+ or (2S,3S)-butane-2,3-diol witrh NAD+, or (S)-1-phenyl-1,2-ethanediol plus NAD+. 5% or less activity with 2-butanol, ethyl lactate, isopropanol, 1-butanol, cyclohexanol, 2-pentanol, 2-octanol, acetophenone, and 4-hydroxy-2-butanone
-
-
-
additional information
?
-
-
3S)-2,3-butanediol, (3R/3S)-acetoin, glycerol, sorbitol or xylitol are no substrates
-
-
-
additional information
?
-
the purified enzyme glycerol dehydrogenase, GDH EC 1.1.1.6, also catalyzes the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol is not a substrate for the GDH at all. Also no activity with 1-propanol, 1-butanol, isopentanol, ethylene glycol, ethanol, and (3S/3R)-acetoin in the oxidation reaction, and poor activity with formaldehyde in the reduction reaction
-
-
-
additional information
?
-
-
the purified enzyme glycerol dehydrogenase, GDH EC 1.1.1.6, also catalyzes the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol is not a substrate for the GDH at all. Also no activity with 1-propanol, 1-butanol, isopentanol, ethylene glycol, ethanol, and (3S/3R)-acetoin in the oxidation reaction, and poor activity with formaldehyde in the reduction reaction
-
-
-
additional information
?
-
the purified enzyme glycerol dehydrogenase, GDH EC 1.1.1.6, also catalyzes the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol is not a substrate for the GDH at all. Also no activity with 1-propanol, 1-butanol, isopentanol, ethylene glycol, ethanol, and (3S/3R)-acetoin in the oxidation reaction, and poor activity with formaldehyde in the reduction reaction
-
-
-
additional information
?
-
-
the purified enzyme glycerol dehydrogenase, GDH EC 1.1.1.6, also catalyzes the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol is not a substrate for the GDH at all. Also no activity with 1-propanol, 1-butanol, isopentanol, ethylene glycol, ethanol, and (3S/3R)-acetoin in the oxidation reaction, and poor activity with formaldehyde in the reduction reaction
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2R,3R)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
(2S)-acetoin + NADH + H+
(2S,3S)-butane-2,3-diol + NAD+
(2S,3S)-butane-2,3-diol + NAD+
(2S)-acetoin + NADH + H+
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
rac-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+

(3R)-acetoin + NADH + H+
-
-
-
-
?
(2R,3R)-butane-2,3-diol + NAD+
(3R)-acetoin + NADH + H+
-
-
-
-
?
(2R,3R)-butane-2,3-diol + NAD+

(3R,3S)-acetoin + NADH + H+
F1T242
preferred substrate
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
F1T242
preferred substrate
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
E7EKB8
Paenibacillus polymyxa ATCC 12321 has the ability to form almost exclusively the R isomer of 2,3-BDL (over 98%) when grown under anaerobic conditions
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(3R,3S)-acetoin + NADH + H+
E7EKB8
Paenibacillus polymyxa ATCC 12321 has the ability to form almost exclusively the R isomer of 2,3-BDL (over 98%) when grown under anaerobic conditions
-
-
r
(2R,3R)-butane-2,3-diol + NAD+

(R)-acetoin + NADH + H+
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(2R,3R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
A0A0E4A9D6
-
-
-
r
(2S)-acetoin + NADH + H+

(2S,3S)-butane-2,3-diol + NAD+
-
the enzyme is not absolutely specific for (S)-acetoin, though this is the preferred substrate
-
-
?
(2S)-acetoin + NADH + H+
(2S,3S)-butane-2,3-diol + NAD+
-
the enzyme is not absolutely specific for (S)-acetoin, though this is the preferred substrate
-
-
?
(2S,3S)-butane-2,3-diol + NAD+

(2S)-acetoin + NADH + H+
-
-
-
-
?
(2S,3S)-butane-2,3-diol + NAD+
(2S)-acetoin + NADH + H+
-
-
-
-
?
(R)-acetoin + NADH + H+

(2R,3R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
A0A0E4A9D6
the activity of (R)-acetoin reduction is 7.7times higher than that of (2R,3R)-butane-2,3-diol oxidation at pH 7.0
-
-
r
(R)-acetoin + NADH + H+
(2R,3R)-butane-2,3-diol + NAD+
A0A0E4A9D6
the activity of (R)-acetoin reduction is 7.7times higher than that of (2R,3R)-butane-2,3-diol oxidation at pH 7.0
-
-
r
(R)-acetoin + NADH + H+

(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R)-acetoin + NADH + H+
(R,R)-butane-2,3-diol + NAD+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+

(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
A0A075BZ18
preferred substrate, 100% activity
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
A0A075BZ18
preferred substrate, 100% activity
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
?
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
effects of growth substrate on enzyme activity in vivo, overview
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
(R,R)-butane-2,3-diol + NAD+
(R)-acetoin + NADH + H+
-
-
-
-
r
dicaetyl + NADH + H+

(3S)-acetoin + NAD+
-
-
-
-
ir
dicaetyl + NADH + H+
(3S)-acetoin + NAD+
-
-
-
-
ir
rac-1,2-propanediol + NAD+

hydroxyacetone + NADH + H+
F1T242
-
-
-
?
rac-1,2-propanediol + NAD+
hydroxyacetone + NADH + H+
F1T242
-
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Sadaharu, U.; Masuda, H.; Miroyuhi, M.
Stereospecific and electrophoretic natures of bacterial 2,3-butanediol dehydrogenases
J. Ferment. Technol.
61
467-471
1983
Bacillus sp., Brevibacillus sp., Enterobacter sp., Micrococcus sp., Pseudomonas sp.
-
brenda
Nokhal, T.H.; Schlegel, H.G.
Fermentation enzymes in strains of Paracoccus denitrificans
Arch. Microbiol.
145
197-201
1986
Paracoccus denitrificans
-
brenda
Höhn-Bentz, H.; Radler, F.
Bacterial 2,3-butanediol dehydrogenases
Arch. Microbiol.
116
197-203
1978
Aeromonas hydrophila, Bacillus subtilis, Gluconobacter oxydans, Paenibacillus polymyxa
brenda
Gonzalez, E.; Fernandez, M.R.; Larroy, C.; Pares, X.; Biosca, J.A.
Characterization and functional role of Saccharomyces cerevisiae 2,3-butanediol dehydrogenase
Chem. Biol. Interact.
130
425-434
2001
Saccharomyces cerevisiae
brenda
Heidlas, J.; Tressl, R.
Purification and characterization of a (R)-2,3-butanediol dehydrogenase from Saccharomyces cerevisiae
Arch. Microbiol.
154
267-273
1990
Saccharomyces cerevisiae
brenda
Crow, V.L.
Properties of 2,3-butanediol dehydrogenase from Lactococcus lactis subsp. lactis in relation to citrate fermentation
Appl. Environ. Microbiol.
56
1656-1665
1990
Lactococcus lactis
brenda
Carballo, J.; Martin, R.; Bernardo, A.; Gonzalez, J.
Purification, characterization and some properties of diacetyl(acetoin) reductase from Enterobacter aerogenes
Eur. J. Biochem.
198
327-332
1991
Klebsiella aerogenes
brenda
Gonzalez, E.; Fernandez, M.R.; Larroy, C.; Sola, L.; Pericas, M.A.; Pares, X.; Biosca, J.A.
Characterization of a (2R,3R)-2,3-butaendiol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product
J. Biol. Chem.
275
35876-35885
2000
Saccharomyces cerevisiae
brenda
Marwoto, B.; Nakashimada, Y.; Kakizono, T.; Nishio, N.
Enhancement of (R,R)-2,3-butanediol production from xylose by Paenibacillus polymyxa at elevated temperatures
Biotechnol. Lett.
24
109-114
2002
Paenibacillus polymyxa
-
brenda
Machielsen, R.; Uria, A.R.; Kengen, S.W.; van der Oost, J.
Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase uperfamily
Appl. Environ. Microbiol.
72
233-238
2006
Pyrococcus furiosus
brenda
Ji, X.J.; Huang, H.; Li, S.; Du, J.; Lian, M.
Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca
Biotechnol. Lett.
30
731-734
2008
Klebsiella oxytoca, Klebsiella oxytoca ME-303
brenda
Cabral, M.E.; Abeijon Mukdsi, M.C.; Medina de Figueroa, R.B.; Gonzalez, S.N.
Citrate metabolism by Enterococcus faecium and Enterococcus durans isolated from goats and ewes milk: influence of glucose and lactose
Can. J. Microbiol.
53
607-615
2007
Enterococcus durans, Enterococcus durans Ov 421, Enterococcus faecium, Enterococcus faecium ET C9
brenda
Nicholson, W.L.
The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase
Appl. Environ. Microbiol.
74
6832-6838
2008
Bacillus subtilis
brenda
Ehsani, M.; Fernandez, M.R.; Biosca, J.A.; Julien, A.; Dequin, S.
Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
Appl. Environ. Microbiol.
75
3196-3205
2009
Saccharomyces cerevisiae
brenda
Ehsani, M.; Fernandez, M.R.; Biosca, J.A.; Dequin, S.
Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis
Biotechnol. Bioeng.
104
381-389
2009
Saccharomyces cerevisiae (P39714), Saccharomyces cerevisiae
brenda
Gonzalez, E.; Fernandez, M.R.; Marco, D.; Calam, E.; Sumoy, L.; Pares, X.; Dequin, S.; Biosca, J.A.
Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol
Appl. Environ. Microbiol.
76
670-679
2010
Saccharomyces cerevisiae
brenda
Yu, B.; Sun, J.; Bommareddy, R.R.; Song, L.; Zeng, A.P.
Novel (2R,3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321
Appl. Environ. Microbiol.
77
4230-4233
2011
Paenibacillus polymyxa (E7EKB8), Paenibacillus polymyxa ATCC 12321 (E7EKB8), Paenibacillus polymyxa ATCC 12321
brenda
Takeda, M.; Muranushi, T.; Inagaki, S.; Nakao, T.; Motomatsu, S.; Suzuki, I.; Koizumi, J.
Identification and characterization of a mycobacterial (2R,3R)-2,3-butanediol dehydrogenase
Biosci. Biotechnol. Biochem.
75
2384-2389
2011
Mycobacterium gilvum, Mycobacterium smegmatis, Mycobacterium sp. (F1T242), Mycobacterium sp. B-009 (F1T242), Mycobacterium vanbaalenii
brenda
Gao, J.; Yang, H.H.; Feng, X.H.; Li, S.; Xu, H.
A 2,3-butanediol dehydrogenase from Paenibacillus polymyxa ZJ-9 for mainly producing R,R-2,3-butanediol: purification, characterization and cloning
J. Basic Microbiol.
53
733-741
2013
Paenibacillus polymyxa, Paenibacillus polymyxa ZJ-9
brenda
Miao, X.; Huang, X.; Zhang, G.; Zhao, X.; Zhu, X.; Dong, H.
Crystallization and preliminary X-ray study of a (2R,3R)-2,3-butanediol dehydrogenase from Bacillus coagulans 2-6
Acta Crystallogr. Sect. F
69
1140-1142
2013
Bacillus coagulans, Bacillus coagulans 2-6
brenda
Koepke, M.; Gerth, M.L.; Maddock, D.J.; Mueller, A.P.; Liew, F.; Simpson, S.D.; Patrick, W.M.
Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase
Appl. Environ. Microbiol.
80
3394-3403
2014
Clostridium autoethanogenum, Clostridium autoethanogenum (F8TEL7)
brenda
Rados, D.; Turner, D.L.; Catarino, T.; Hoffart, E.; Neves, A.R.; Eikmanns, B.J.; Blombach, B.; Santos, H.
Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol
Appl. Microbiol. Biotechnol.
100
10573-10583
2016
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032
brenda
de Oliveira, R.R.; Nicholson, W.L.
Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli
Appl. Microbiol. Biotechnol.
100
719-728
2016
Bacillus subtilis, Bacillus subtilis WN1038
brenda
Kang, I.Y.; Park, J.M.; Hong, W.K.; Kim, Y.S.; Jung, Y.R.; Kim, S.B.; Heo, S.Y.; Lee, S.M.; Kang, J.Y.; Oh, B.R.; Kim, D.H.; Seo, J.W.; Kim, C.H.
Enhanced production of 2,3-butanediol by a genetically engineered Bacillus sp. BRC1 using a hydrolysate of empty palm fruit bunches
Bioprocess Biosyst. Eng.
38
299-305
2015
Bacillus sp. (A0A075BZ18), Bacillus sp. BRC1 (A0A075BZ18)
brenda
Ge, Y.; Li, K.; Li, L.; Gao, C.; Zhang, L.; Ma, C.; Xu, P.
Contracted but effective: Production of enantiopure 2,3-butanediol by thermophilic and GRAS: Bacillus licheniformis
Green Chem.
18
4693-4703
2016
Bacillus licheniformis, Bacillus licheniformis MW3
-
brenda
Cui, Y.; Zhou, J.; Gao, L.; Zhu, C.; Jiang, X.; Fu, S.; Gong, H.
Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production
J. Appl. Microbiol.
117
690-698
2014
Bacillus licheniformis
brenda
Wang, Y.; Tao, F.; Xu, P.
Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae
J. Biol. Chem.
289
6080-6090
2014
Klebsiella pneumoniae, Klebsiella pneumoniae ATCC 25955
brenda
Bai, F.; Dai, L.; Fan, J.; Truong, N.; Rao, B.; Zhang, L.; Shen, Y.
Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production
J. Ind. Microbiol. Biotechnol.
42
779-786
2015
Bacillus subtilis 168, Bacillus subtilis, Serratia marcescens, Serratia marcescens MG1
brenda
Kochius, S.; Paetzold, M.; Scholz, A.; Merkens, H.; Vogel, A.; Ansorge-Schumacher, M.; Hollmann, F.; Schrader, J.; Holtmann, D.
Enantioselective enzymatic synthesis of the alpha-hydroxy ketone (R)-acetoin from meso-2,3-butanediol
J. Mol. Catal. B
103
61-66
2014
Haloarcula marismortui
-
brenda
Hao, W.; Ji, F.; Wang, J.; Zhang, Y.; Wang, T.; Bao, Y.
Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis
J. Mol. Catal. B
109
184-190
2014
Bacillus subtilis, Bacillus subtilis 168
-
brenda
Zhao, X.; Zhang, X.; Rao, Z.; Bao, T.; Li, X.; Xu, M.; Yang, T.; Yang, S.
Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5
Lett. Appl. Microbiol.
61
573-579
2015
Corynebacterium crenatum, Corynebacterium crenatum SYPA5-5
brenda
Yu, M.; Huang, M.; Song, Q.; Shao, J.; Ying, X.
Characterization of a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010
Molecules
20
7156-7173
2015
Rhodococcus erythropolis (A0A0E4A9D6), Rhodococcus erythropolis WZ010 (A0A0E4A9D6), Rhodococcus erythropolis WZ010
brenda
Maddock, D.J.; Patrick, W.M.; Gerth, M.L.
Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity
Protein Eng. Des. Sel.
28
251-258
2015
Clostridium autoethanogenum (F8TEL7)
brenda
Bae, S.J.; Kim, S.; Hahn, J.S.
Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase
Sci. Rep.
6
27667
2016
Saccharomyces cerevisiae, Saccharomyces cerevisiae BY4741
brenda
Zhang, L.; Xu, Q.; Peng, X.; Xu, B.; Wu, Y.; Yang, Y.; Sun, S.; Hu, K.; Shen, Y.
Cloning, expression and characterization of glycerol dehydrogenase involved in 2,3-butanediol formation in Serratia marcescens H30
J. Ind. Microbiol. Biotechnol.
41
1319-1327
2014
Serratia marcescens (A0A0N1UZ86), Serratia marcescens, Serratia marcescens H30 (A0A0N1UZ86), Serratia marcescens H30
brenda
Liang, K.; Shen, C.R.
Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance
Metab. Eng.
39
181-191
2017
Escherichia coli, Escherichia coli BW25113
brenda